Part Number Hot Search : 
6A100 20022 2520E PT12224 VRE119 UC3843A 23K512 M62364FP
Product Description
Full Text Search
 

To Download MRF7P20040HR3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Freescale Semiconductor Technical Data
Document Number: MRF7P20040H Rev. 1, 8/2009
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for CDMA base station applications with frequencies from 2010 to 2025 MHz. Can be used in Class AB and Class C for all typical cellular base station modulation formats. * Typical Doherty Single - Carrier W - CDMA Performance: VDD = 32 Volts, IDQA = 150 mA, VGSB = 1.5 Vdc, Pout = 10 Watts Avg., Channel Bandwidth = 3.84 MHz, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency 2025 MHz Gps (dB) 18.2 hD (%) 42.6 Output PAR (dB) 7.3 ACPR (dBc) - 34.8
MRF7P20040HR3 MRF7P20040HSR3
2010 - 2025 MHz, 10 W AVG., 32 V SINGLE W - CDMA LATERAL N - CHANNEL RF POWER MOSFETs
* Capable of Handling 5:1 VSWR, @ 32 Vdc, 2017.5 MHz, 50 Watts CW Output Power (3 dB Input Overdrive from Rated Pout) * Typical Pout @ 3 dB Compression Point ] 50 Watts CW Features * Production Tested in a Symmetrical Doherty Configuration * 100% PAR Tested for Guaranteed Output Power Capability * Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source S - Parameters * Internally Matched for Ease of Use * Integrated ESD Protection * Greater Negative Gate - Source Voltage Range for Improved Class C Operation * RoHS Compliant * In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
CASE 465M - 01, STYLE 1 NI - 780 - 4 MRF7P20040HR3
CASE 465H - 02, STYLE 1 NI - 780S - 4 MRF7P20040HSR3
RFinA/VGSA 3
1 RFoutA/VDSA
RFinB/VGSB 4
2 RFoutB/VDSB
(Top View)
Figure 1. Pin Connections Table 1. Maximum Ratings
Rating Drain - Source Voltage Gate - Source Voltage Operating Voltage Storage Temperature Range Case Operating Temperature Operating Junction Temperature (1,2) Symbol VDSS VGS VDD Tstg TC TJ Value - 0.5, +65 - 6.0, +10 32, +0 - 65 to +150 150 225 Unit Vdc Vdc Vdc C C C
1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/ Application Notes - AN1955.
(c) Freescale Semiconductor, Inc., 2009. All rights reserved.
MRF7P20040HR3 MRF7P20040HSR3 1
RF Device Data Freescale Semiconductor
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case Case Temperature 82C, Pout = 40 W CW 32 Vdc, IDQA = 150 mA 32 Vdc, VGSB = 1.5 Vdc Case Temperature 78C, Pout = 10 W CW 32 Vdc, IDQA = 150 mA 32 Vdc, VGSB = 1.5 Vdc Symbol RJC 2.3 2.3 2.5 2.9 Value (1,2) Unit C/W
Table 3. ESD Protection Characteristics
Test Methodology Human Body Model (per JESD22 - A114) Machine Model (per EIA/JESD22 - A115) Charge Device Model (per JESD22 - C101) Class 1A (Minimum) B (Minimum) IV (Minimum)
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)
Characteristic Off Characteristics
(3)
Symbol IDSS IDSS IGSS
Min -- -- --
Typ -- -- --
Max 10 1 1
Unit Adc Adc Adc
Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) Zero Gate Voltage Drain Leakage Current (VDS = 32 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) On Characteristics (3) Gate Threshold Voltage (VDS = 10 Vdc, ID = 33.5 Adc) Gate Quiescent Voltage (VDD = 32 Vdc, ID = 150 mAdc, Measured in Functional Test) Drain - Source On - Voltage (VGS = 10 Vdc, ID = 0.325 Adc)
VGS(th) VGS(Q) VDS(on)
1.2 2 0.1
2 2.7 0.24
2.7 3.5 0.3
Vdc Vdc Vdc
Functional Tests (4,5) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQA = 150 mA, VGSB = 1.5 Vdc, Pout = 10 W Avg., f = 2025 MHz, Single - Carrier W - CDMA, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Drain Efficiency Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss Gps D PAR ACPR IRL 16 39 6.9 -- -- 18.2 42.6 7.3 - 34.8 - 17.8 21 -- -- - 30 - 10 dB % dB dBc dB
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/ Application Notes - AN1955. 3. Each side of device measured separately. 4. Part internally matched both on input and output. 5. Measurement made with device in a Symmetrical Doherty configuration. (continued)
MRF7P20040HR3 MRF7P20040HSR3 2 RF Device Data Freescale Semiconductor
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
(1)
Symbol
Min
Typ
Max
Unit
Typical Performance (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQA = 150 mA, VGSB = 1.5 Vdc, 2010 - 2025 MHz Bandwidth Pout @ 1 dB Compression Point, CW Pout @ 3 dB Compression Point, CW IMD Symmetry @ 15 W PEP, Pout where IMD Third Order Intermodulation 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Gain Flatness in 15 MHz Bandwidth @ Pout = 10 W Avg. Gain Variation over Temperature ( - 30C to +85C) Output Power Variation over Temperature ( - 30C to +85C) 1. Measurement made with device in a Symmetrical Doherty configuration. P1dB P3dB IMDsym -- -- -- 35 50 8 -- -- -- W W MHz
VBWres GF G P1dB
-- -- -- --
70 0.04 0.013 0.006
-- -- -- --
MHz dB dB/C dBm/C
MRF7P20040HR3 MRF7P20040HSR3 RF Device Data Freescale Semiconductor 3
VGGA
VDSA
C13
R2
C11
C15
C17
C7 C5 C R1 C1 C3 C2 C4 CUT OUT AREA C9
P
C10
C19
C6
C8 C12 C16 C18
C14
R3 MRF7P20040H/HS Rev. 1
VGGB
VDSB
Figure 2. MRF7P20040HR3(HSR3) Test Circuit Component Layout
Table 5. MRF7P20040HR3(HSR3) Test Circuit Component Designations and Values
Part C1, C2, C9, C10 C3, C4 C5, C6 C7, C8 C11, C12 C13, C14 C15, C16 C17, C18 C19 R1 R2, R3 PCB Description 12 pF Chip Capacitors 2.4 pF Chip Capacitors 27 pF Chip Capacitors 1.1 pF Chip Capacitors 12 pF Chip Capacitors 2.2 F, 50 V Chip Capacitors 4.7 F, 50 V Chip Capacitors 10 F, 50 V Chip Capacitors 0.8 pF Chip Capacitor 100 , 1/4 W Chip Resistor 12 , 1/4 W Chip Resistors 0.020, r = 3.5 Part Number ATC600F120FT250XT ATC600F2R4AT250XT ATC600F270FT250XT ATC600F1R1AT250XT ATC100B120FT1500XT C3225X7R1H225KT GRM43ER61H475MA88L GRM55DR61H106KA88L ATC600F0R8AT250XT CRCW12061000FKEA CRCW120612R0FKEA RO4350B Manufacturer ATC ATC ATC ATC ATC TDK Murata Murata ATC Vishay Vishay Rogers
MRF7P20040HR3 MRF7P20040HSR3 4 RF Device Data Freescale Semiconductor
Single-ended
l 4
l 4
Quadrature combined
l 4
Doherty
l 2
l 2
Push-pull
Figure 3. Possible Circuit Topologies
MRF7P20040HR3 MRF7P20040HSR3 RF Device Data Freescale Semiconductor 5
TYPICAL CHARACTERISTICS
VDD = 32 Vdc, Pout = 10 W (Avg.) IDQA = 150 mA, VGSB = 1.5 Vdc Gps D, DRAIN EFFICIENCY (%) 18.5 18 17.5 Gps, POWER GAIN (dB) 17 16.5 16 ACPR 15.5 15 14.5 14 13.5 1880 1900 PARC 46 44 42 40 Single-Carrier W-CDMA 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 38 -28 -30 ACPR (dBc) -32 -34 -36 IRL 1920 1940 1960 1980 2000 2020 -38 2040 IRL, INPUT RETURN LOSS (dB) -14 -16 -18 -20 -22 -24 -1.8 -2 -2.2 -2.4 -2.6 -2.8 PARC (dB)
D
f, FREQUENCY (MHz)
Figure 4. Output Peak - to - Average Ratio Compression (PARC) Broadband Performance @ Pout = 10 Watts Avg.
-10 VDD = 32 Vdc, Pout = 15 W (PEP), IDQA = 150 mA VGSB = 1.5 Vdc, Two-Tone Measurements (f1 + f2)/2 = Center Frequency of 2017.5 MHz IM3-L -30 IM3-U -40 IM5-U IM5-L
IMD, INTERMODULATION DISTORTION (dBc)
-20
-50 IM7-U -60 1 IM7-L 10 TWO-TONE SPACING (MHz) 100
Figure 5. Intermodulation Distortion Products versus Two - Tone Spacing
18.5 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) 18 Gps, POWER GAIN (dB) 17.5 17 16.5 16 15.5 1 Gps 0 -2 dB = 7.64 W -1 -2 -3 -4 -5 3 VDD = 32 Vdc, IDQA = 150 mA PARC VGSB = 1.5 Vdc, f = 2017.5 MHz Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 6 9 12 15 -1 dB = 5.48 W -3 dB = 10.07 W 32 28 24 ACPR 40 36 -26 -28 -30 -32 -34 -36 -38 ACPR (dBc)
D
48 D, DRAIN EFFICIENCY (%) 44
Pout, OUTPUT POWER (WATTS)
Figure 6. Output Peak - to - Average Ratio Compression (PARC) versus Output Power
MRF7P20040HR3 MRF7P20040HSR3 6 RF Device Data Freescale Semiconductor
TYPICAL CHARACTERISTICS
19 18.5 18 Gps, POWER GAIN (dB) 17.5 VDD = 32 Vdc, IDQA = 150 mA VGSB = 1.5 Vdc, Single-Carrier 17 W-CDMA, 3.84 MHz Channel 16.5 Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% 16 Probability on CCDF 15.5 15 14.5 14 1 10 Pout, OUTPUT POWER (WATTS) AVG. 50 ACPR 2025 MHz D f = 2010 MHz 2025 MHz 2017.5 MHz 2017.5 MHz 2010 MHz 60 55 D, DRAIN EFFICIENCY (%) 50 45 40 35 30 Gps 2025 MHz 2017.5 MHz 2010 MHz 25 20 15 10 0 -5 -10 -15 ACPR (dBc) -20 -25 -30 -35 -40 -45 -50
Figure 7. Single - Carrier W - CDMA Power Gain, Drain Efficiency and ACPR versus Output Power
20 16 12 GAIN (dB) 8 4 0 -4 1450 VDD = 32 Vdc Pin = 0 dBm IDQA = 150 mA VGSB = 1.5 Vdc 1575 1700 1825 1950 2075 2200 2325 IRL -4 -10 -16 -22 -28 -34 -40 2450 IRL (dB)
Gain
f, FREQUENCY (MHz)
Figure 8. Broadband Frequency Response
MRF7P20040HR3 MRF7P20040HSR3 RF Device Data Freescale Semiconductor 7
W - CDMA TEST SIGNAL
100 10 PROBABILITY (%) 1 Input Signal 0.1 (dB) 0.01 0.001 0.0001 0 W-CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 2 4 6 8 10 12 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -9 -7.2 -5.4 -3.6 -1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) -ACPR in 3.84 MHz Integrated BW +ACPR in 3.84 MHz Integrated BW 3.84 MHz Channel BW
PEAK-TO-AVERAGE (dB)
Figure 9. CCDF W - CDMA IQ Magnitude Clipping, Single - Carrier Test Signal
Figure 10. Single - Carrier W - CDMA Spectrum
MRF7P20040HR3 MRF7P20040HSR3 8 RF Device Data Freescale Semiconductor
VDD = 32 Vdc, IDQA = 150 mA, VGSB = 1.5 Vdc, Pout = 10 W Avg. f MHz 1995 2000 2005 2010 2015 2020 2025 2030 2035 Zload Zsource W 6.80 - j13.11 6.66 - j13.03 6.52 - j12.93 6.37 - j12.85 6.22 - j12.78 6.08 - j12.69 5.94 - j12.60 5.80 - j12.49 5.65 - j12.40 Zload W 14.67 + j4.09 14.87+ j3.82 15.08 + j3.58 15.27 + j3.29 15.45 + j3.00 15.62 + j2.77 15.80 + j2.44 15.95 + j2.14 16.08 + j1.82
Note: Measured with Peaking side open. = Test circuit impedance as measured from drain to ground.
Zsource = Test circuit impedance as measured from gate to ground. Output Matching Network
Input Matching Network
Device Under Test
Z
source
Z
load
Figure 11. Series Equivalent Source and Load Impedance -- Carrier Side
VDD = 32 Vdc, IDQA = 150 mA, VGSB = 1.5 Vdc, Pout = 10 W Avg. f MHz 1995 2000 2005 2010 2015 2020 2025 2030 2035 Zload Zsource W 8.45 - j12.85 8.28 - j12.79 8.11 - j12.70 7.95 - j12.63 7.79 - j12.56 7.63 - j12.48 7.50 - j12.40 7.34 - j12.32 7.19 - j12.24 Zload W 5.83 - j10.09 5.57 - j10.11 5.32 - j10.08 5.06 - j10.07 4.80 - j10.06 4.55 - j10.01 4.32 - j9.96 4.06 - j9.88 3.82 - j9.81
Note: Measured with Carrier side open. = Test circuit impedance as measured from drain to ground.
Zsource = Test circuit impedance as measured from gate to ground. Output Matching Network
Input Matching Network
Device Under Test
Z
source
Z
load
Figure 12. Series Equivalent Source and Load Impedance -- Peaking Side MRF7P20040HR3 MRF7P20040HSR3 RF Device Data Freescale Semiconductor 9
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
VDD = 32 Vdc, IDQA = 150 mA, Pulsed CW 10 sec(on), 10% Duty Cycle 49 48 Pout, OUTPUT POWER (dBm) 47 46 45 44 43 42 41 40 39 17 18 19 20 21 22 23 24 25 26 27 Pin, INPUT POWER (dBm) Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 32 V f (MHz) 2010 2025 P1dB Watts 26 26 dBm 44.1 44.2 31 31 P3dB Watts dBm 44.9 44.9 f = 2025 MHz f = 2010 MHz Actual f = 2025 MHz f = 2010 MHz Ideal
Test Impedances per Compression Level f (MHz) 2010 2025 P1dB P1dB Zsource 2.49 - j18.56 2.66 - j19.78 Zload 15.82 - j0.28 15.78 + j0.52
Figure 13. Pulsed CW Output Power versus Input Power @ 32 V
NOTE: Measurement made on the Class AB, carrier side of the device.
MRF7P20040HR3 MRF7P20040HSR3 10 RF Device Data Freescale Semiconductor
PACKAGE DIMENSIONS
MRF7P20040HR3 MRF7P20040HSR3 RF Device Data Freescale Semiconductor 11
MRF7P20040HR3 MRF7P20040HSR3 12 RF Device Data Freescale Semiconductor
MRF7P20040HR3 MRF7P20040HSR3 RF Device Data Freescale Semiconductor 13
MRF7P20040HR3 MRF7P20040HSR3 14 RF Device Data Freescale Semiconductor
PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE
Refer to the following documents, tools and software to aid your design process. Application Notes * AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins * EB212: Using Data Sheet Impedances for RF LDMOS Devices Software * Electromigration MTTF Calculator * RF High Power Model * .s2p File For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision 0 1 Date June 2009 Aug. 2009 * Initial Release of Data Sheet * Removed IQ Magnitude Clipping from Typical Performance bullet, p. 1 and Functional Test header, p. 2 * Electrical Characteristics, DC tests: updated footnote to indicate each side of device measured separately, p. 2 Description
MRF7P20040HR3 MRF7P20040HSR3 RF Device Data Freescale Semiconductor 15
How to Reach Us:
Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. (c) Freescale Semiconductor, Inc. 2009. All rights reserved.
MRF7P20040HR3 MRF7P20040HSR3
Rev. 16 1, 8/2009 Document Number: MRF7P20040H
RF Device Data Freescale Semiconductor


▲Up To Search▲   

 
Price & Availability of MRF7P20040HR3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X